
December 2005 www.stsc.hill.af.mil 13

Eliminating Embedded Software Defects
Prior to Integration Test

Ted L. Bennett and Paul W. Wennberg
Triakis Corporation

Research has shown that finding software faults early in the development cycle not only improves software assurance, but also
reduces software development expense and time. The root causes of the majority of embedded system software defects discov-
ered during hardware integration test have been attributed to errors in understanding and implementing requirements. The
independence that typically exists between the system and software development processes provides ample opportunity for the
introduction of these types of faults. This article shows a viable method of verifying object software using the same tests cre-
ated to verify the system design from which the software was developed. After passing the same tests used to verify the system
design, it can be said that the software has correctly implemented all of the known and tested system requirements. This
method enables the discovery of functional faults prior to the integration test phase of a project.

New, complex embedded systems are
quick to take advantage of the unre-

lenting pace of advancement in computer
hardware performance and capacity.
Along with the increase in hardware capa-
bility comes a considerably greater
increase in the functionality and complex-
ity of the software in control.

Unfortunately, the methods and tools
we use to develop and test systems and
software have not kept up with the trend.
This is evidenced by the number of soft-
ware faults that pass undetected into the
integration and operational phases of
contemporary projects.

This is of concern for two important
reasons. In the case of software in control
of safety – or mission-critical systems –
allowing a failure to pass undetected into
the operational phase of a project may put
lives and/or critical missions at risk. In all
cases, the more faults that pass undetected
into integration test and beyond, the more
the project will cost and the longer it will
take to complete.

This article presents a new, closed-
loop method of simulating and verifying
embedded system designs and their con-
trolling software in a pure, virtual system
integration laboratory environment. We
have demonstrated and validated this
method in a recently concluded research
effort sponsored by the NASA Office of
Safety and Mission Assurance under their
Software Assurance Research Program [1].
Our investigation showed the following:
1. A new method of specifying, execut-

ing, and verifying an entire system
design in a pure virtual environment.

2. How uninstrumented, embedded
object software can be verified in the
virtual system environment.

3. How the same tests used to verify the
system design may be used to verify
the controlling software.
It follows from item No. 3 that if the

software passes the same tests used to ver-
ify the system design then it correctly
implements the known and tested system
requirements. As a result, we now have a
viable means of discovering requirements-
induced software faults prior to the inte-
gration test phase of a project. This is sig-
nificant because it has been shown that
early discovery of faults reduces both
project cost and duration.

Root Causes of Software
Faults
The root causes of the majority of soft-
ware defects discovered in integration test
during the development of an embedded
system have been attributed to errors in
understanding and implementing require-
ments (see the sidebar “JPL Root-Cause
Analysis of Spacecraft Software Defects”
and Figure 1 on page 14). These may be
the system and/or the software require-
ments. We assert that this is largely a result
of the independence that exists between
the requirements development and the
software development processes.

The JPL report findings are echoed in
reports of numerous other researchers
such as Leveson [3, 4], Ellis [5],
Thompson [6], and others. Consider some
of the many avenues where requirements-
related problems might be introduced:
• Assumptions/ambiguities affecting

the interpretation of customer de-
scriptions of desired system behavior.

• The difficulty in fully understanding
the real-world environment in which
the system will interact.

• The difficulty in anticipating all of the
possible modes and states that the sys-
tem may encounter.

• The difficulty in thoroughly validating
and verifying requirements.

• Capturing accurate, unambiguous rep-
resentations of requirements in a writ-
ten document.

• Misinterpretation of system-level re-
quirements by software designers.

• The difficulty in verifying that the
design has correctly implemented the
requirements.
To compound the problem, we gener-

ally cannot know at the onset of a project
if we have accurately modeled the real-
world system behavior. As a project
advances, however, so does our under-
standing of the system. Additional faults
may be introduced when subsequent
refinements to the system model are not
adequately communicated to the software
development teams. To be more effective
at creating software with a high level of
assurance, not only must we reduce the
number of errors attributable to misun-
derstanding and misimplementing require-
ments, but we must also improve commu-
nication between and among the system
and implementation teams.

Shortcomings of Federated
Development Methods
Contemporary, embedded systems devel-
opment projects are typically conducted in
a federated manner. In other words, the
system and software development activi-
ties are conducted essentially independent
of each other. To illustrate this point,
Figure 2 on page 15 depicts the three prin-
cipal loops comprising a typical project
process. We will ignore hardware develop-
ment activities since they are not germane
to this discussion.

The first loop is where the system
design is created. The system designers
may make use of modeling, simulation,
prototyping, executable specifications
(ES), and other tools to satisfy the need to
validate control algorithms, component
interactions, etc. The system architects
validate and verify their design through
analysis, possibly tests, and possibly by
similarity with reused components. They

14 CROSSTALK The Journal of Defense Software Engineering December 2005

Total Creation of a Software Project

then document the requirements for the
implementation teams to follow. When
satisfied with their design (or when time
runs out), the system team delivers the
system specification package to the imple-
mentation teams.

Entering the second loop shown in
Figure 2, the software implementation
team interprets the relevant requirements
– whether written in natural language,
specification design language, or exe-
cutable specifications – derives software
requirements, and creates its design. The
software developers write their own tests
to verify conformance to the require-
ments as they have interpreted them.
They may use some form of simulation,
hardware development boards, inspec-
tion, analysis, or similarity comparison to
facilitate verification of their code.

When a major part of the system
functionality has been coded, the software
team creates a build. The software is
loaded into its target hardware where inte-
gration test begins in the laboratory.

Connected to test equipment, simulators,
and perhaps other system elements, the
control software is stimulated by the hard-
ware environment under the control of
custom test software. Bugs discovered
during integration test are filed as prob-
lem reports and passed back to the devel-
opment team to resolve, thereby complet-
ing the third loop.

We see the independence that exists
between the system and software loops in
this development process as the primary
reason for the propagation of software
faults into integration test. Further, this
independent process may breed duplicity
of effort where the software and system
teams write their own tests to verify the
same behavior at the system and software
levels.

Our research has shown a method of
connecting the system and software
development loops that allows tests writ-
ten for system verification to be used to
verify the software itself. This enables the
software to be thoroughly debugged in a

pure, virtual environment before it ever
gets to the hardware integration phase.

Coupling the System and
Software Development Loops
Figure 3 illustrates our approach to con-
necting the system and software develop-
ment loops. This new approach retains
the system and software development
loops, but eliminates the loop where the
hardware integration lab is used for soft-
ware debug activities.

As before, your project begins with
the development of a system design using
various tools for algorithm development,
etc. However, in lieu of passing the design
and requirements to the implementation
teams as a collection of disparate specifi-
cations, the entire system and the envi-
ronment in which it interacts is simulated
using a form of ES. All parts in the simu-
lation are bounded like their real-world
counterparts so the interface behavior of
each element can be correctly modeled
and specified. Parts are created with built-
in failure modes that may be activated
under test control.

Having modeled the behavior of the
entire system environment, you now have
a complete virtual system integration lab-
oratory (VSIL) in which to validate and
verify your system design. The next step is
to create a suite of tests based upon nom-
inal and off-nominal scenarios for which
the system has been designed to react.
Our testing philosophy is to exercise the
system by driving the environment as
realistically as possible, and monitoring
the system behavior in response. This is
generally not a viable approach for hard-
ware system integration laboratory setups
due to the cost or difficulty involved in
procuring, creating, and synchronously
controlling all the disparate pieces of
hardware and simulators necessary to
realistically drive the target system.

The completed and verified VSIL is
then passed, along with the system-level
tests and any supplemental written
requirements, to the development teams.
The teams create hardware and software
designs from the specified processing,
communication, interface, control, and
other requirements. As soon as the hard-
ware architecture has been established,
the target embedded controller for which
the software is being developed must be
simulated with sufficient fidelity to run
the unmodified object software. Because
the simulated controller hardware is
bounded (i.e., it has identical interfaces)
like the ES part from which it was devel-
oped, it may be plugged into the VSIL in

JPL Root-Cause Analysis of
Spacecraft Software Defects

In 1992, Dr. Robyn Lutz conducted an
analysis for the Jet Propulsion Laboratory
(JPL) to determine the root causes of the
387 software defects discovered during the
integration test phase of the Voyager and
Galileo spacecraft development efforts.
The software controlling these spacecraft
is distributed among several embedded
computers with roughly 18,000 and 22,000
lines of source code, respectively. Lutz
reported that the programming faults dis-
covered on the two projects are distributed
as shown in Figure 1.

The fault classifications given in Figure
1 are defined as follows:
• Functional faults comprise the three subclasses listed below:

a. Operating faults: Omission of, or unnecessary operations.
b. Conditional faults: Incorrect condition or limit values.
c. Behavioral faults: Incorrect behavior, not conforming to requirements.

• Interface faults are those related to interactions with other system components such
as transfer of data or control.

• Internal faults are defined as coding faults internal to a software module.
The data show that 98 percent of the combined total software problems were clas-

sified as functional or interface faults that are directly attributable to errors in under-
standing and implementing requirements, and inadequate communication between
development teams. Only 2 percent were due to software module coding errors [2].
The conclusions of the JPL report point to the need for improved focus in the follow-
ing areas:
1. Interfaces between the software and the system domains.
2. Identification of safety-critical hazards early in the requirements analysis.
3. Use of formal (and unambiguous) specification techniques.
4. Promotion of informal communication among teams.
5. Keeping development and test teams apprised of changes to requirements.
6. Inclusion of requirements for defensive design.

2

Functional

74%

Interface

24%

Internal 2%

37

7

3

130

26

13
3

1

50

10

5
1

10
2

1
5

1
1

0

50

100

150

200

250

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir

e
d

Relative

Cost to

Repair

400
400400

40
400

0
0400

300

250

200

150

100

50

0

368

130

50

64

37

7
3

10

5

1

26
13

3
1

1

15
10

2
1

R
equir

em
ents

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir
e
d

Operational

D
esig

n

Test

In
te

gra
tio

n

Integration

Test

Code

Design

Requirements

Relative

Cost to

Repair
33350350

C
ode

Figure 1: Fault Distribution

December 2005 www.stsc.hill.af.mil 15

place of its ES counterpart. We refer to
this controller hardware simulation part as
a detailed executable (DE) (see Figure 3).

The DE gives the software team the
ability to test the software it develops (see
Figure 3, step 1) in the VSIL (see Figure
3, steps 2-4). After replacing the con-
troller ES with the DE, the software
being developed may be compiled and
loaded into the DE at any time for testing
in the VSIL. All of the tests created to
verify the system design can be used,
without modification, for software verifi-
cation. Additional tests must be added to
verify that software has correctly imple-
mented lower-level requirements whose
detail has not been addressed at the sys-
tem level (e.g., built-in test, etc.).

After running the desired tests, the
software development team analyzes the
results and determines the cause of any
failures. The team then corrects any iden-
tified faults, recompiles the revised mod-
ules, and retests the build in the VSIL (see
Figure 3, steps 1-4). In practice, step 3 is
performed once since the DE becomes an
integral part of the VSIL following
replacement of its ES counterpart. The
VSIL is tightly coupled with the integrated
software development environment used
by the software team – thereby facilitating
the code/compile/load/verify process.

Some of the problems discovered may
require the attention of the system design-
ers. When this necessitates a system design
change, the VSIL is revised and tested and
redistributed to the software development
teams. In this manner, the software is
always developed and tested in the most
current system design – thereby eliminat-
ing the possibility of software problems
being introduced due to miscommunica-
tion of system design changes.

The software design/code/verify/
debug loop is repeatedly executed until
the final build passes all tests and until all
paths through the code have been exer-
cised in the VSIL. Thus, the software has
been thoroughly verified and is ready for
integration testing with the real flight
hardware.

It is worth noting that since the object
code itself is tested in the VSIL, the real-
time operating system (RTOS), any
reused/commercial off-the-shelf mod-
ules, and all newly developed software are
verified together in the virtual target envi-
ronment. The VSIL itself is a Microsoft
Windows-compatible application that
interfaces with standard integrated devel-
opment environment tools. A VSIL is as
easily used as a typical lab test setup (e.g.,
emulator, simulators, target hardware) and
readily distributed to all project develop-

ment personnel. Since the entire system
and environment are modeled in the
VSIL, modifications and refinements can
be coded, validated, verified, and distrib-
uted to the entire team. VSIL revisions
and verification tests may be controlled
using standard configuration manage-
ment tools and techniques. Lastly, the
VSIL is purely virtual: no hardware is
required other than the Windows-based
PC on which it runs.

Discussion
We have presented a new method of
embedded systems and software verifica-
tion and validation (V&V) that closes the
loop between system and software devel-
opment activities. In so doing, the system
and software development processes can
now be connected through common ver-
ification tests.

Finding and repairing software faults
early in the project development cycle can
lead to substantial savings (see the sidebar
“Economics of Fault Finding” on page
16). For example, requirements and com-
munication-induced errors like 98 percent
of those discovered during the integra-
tion phase of the Voyager and Galileo

spacecraft software projects, can be found
and repaired at one or perhaps more
orders of magnitude lower cost.

Implications
Below is a summary list of some of the
ways that the methods presented in this
article may be of economic benefit to
embedded software development:
1. Discover system errors early in the

development cycle where it is least
costly to correct them.

2. Reduce interpretation-induced soft-
ware faults due to ambiguities in sys-
tem requirements.

3. Improve ability for dynamic, non-
invasive test of system and software
response to failure conditions.

4. Reduce software faults caused by
breakdown in communication of sys-
tem requirements changes.

5. Utilize new capacity for empirical soft-
ware V&V in cases where analysis was
the only viable means, for example,
realistic fault injection and failure
mode testing, complex digital signal
processor designs, etc.

6. Provide a highly viable means of veri-
fying automatically generated code,

Eliminating Embedded Software Defects Prior to Integration Test

SYSTEM

Design/Analyze/Test

Model,

Simulate,

Prototype,

ES, etc.

Software

Interpretation

Requirements

Debug

Build

Integration

Test

Design/Analyze/Test

Hardware

Integration

Testing

CPU I/O

RAM

ROM

Test Resu lts

Build

Operational

Service

D E

Bug

Discovery

Simulation of

Embedded

Controller Hardware

Software Passes

All Tests in VSIL

3. Replace ES

Controller in

VSIL with DE

2. Load

Object

Software

4. Test

Software

in VSIL

Verify Design

Debug Code

System Team Delivers:

• ES-Based VSIL

• V&V Test Suite

1. Develop

Software

Figure 2: Federated Development Process

SYSTEM

Design/Analyze/Test

Model,

Simulate,

Prototype,

ES, etc.

Software

Interpretation

Requirements

Debug

Build

Integration

Test

Design/Analyze/Test

Hardware

Integration

Testing

CPU I/O

RAM

ROM

Test Resu lts

Build

Operational

Service

D E

Bug

Discovery

Simulation of

Embedded

Controller Hardware

Software Passes

All Tests in VSIL

3. Replace ES

Controller in

VSIL with DE

2. Load

Object

Software

4. Test

Software

in VSIL

Verify Design

Debug Code

System Team Delivers:

• ES-Based VSIL

• V&V Test Suite

1. Develop

Software

Figure 3: Closed-Loop Software Verification in Virtual System Integration Lab

Total Creation of a Software Project

reused software, and RTOS.
Creating a system design with the type

of ES discussed herein results in a verifi-
able system architecture that is readily
translated into component- and interface-
level designs. When contracting out the
development of subsystem software, the
system-level verification tests can provide
an excellent way to assure that the contrac-
tor has developed the software correctly.

Because ES parts may be created with
intrinsic failure modes that can be invoked
dynamically under test control, the system
designer can empirically verify the speci-
fied system response to a variety of off-

nominal conditions. This ability allows
greater latitude in the type and number of
tests that can be conducted when com-
pared with what is economically viable in
a hardware integration lab.

Verifying the VSIL
The VSIL is, in fact, a model of both the
system being developed and the environ-
ment in which it is designed to interact.
Before it can be of use, we must have con-
fidence that the VSIL represents its target
adequately.

We have adopted an effective
approach that is perhaps best described as

test as you go. As parts are simulated to
implement specific requirements, system-
level tests are created simultaneously to
verify that they behave correctly. Part
functionality may be developed and tested
incrementally as requirements are imple-
mented. At the end of this process, all
VSIL parts have been implemented and
verified and a basic set of system-level
tests has been developed.

Parts developed to a high fidelity level
may require a supplemental verification
activity where the real-world equivalent
part is used for comparison purposes. In
the case of developing an instruction-set-
level CPU simulation, we run test code
designed to verify instruction execution
on a hardware development board and
compare the results with the outcome of
running the same code on the simulated
part. The CPU parts we have developed
are not cycle-accurate but are refined to
where the instructions execute within an
average of 4 percent of the hardware per-
formance (works well for embedded soft-
ware verification). This is in keeping with
our philosophy of not implementing
greater fidelity than necessary.

VSIL Development Tool
Triakis developed its first avionics simula-
tor more than a decade ago to save time
verifying software modifications and to
avoid contention for lab test resources.
This initiative spawned the creation of
IcoSim, Triakis’ general-purpose simulator
development tool, and its companion
software developer’s kit (SDK).

The IcoSim SDK is typically available at
no cost to customers availing themselves of
Triakis' VSIL development services. In the
second quarter of 2006, however, Triakis
plans to make IcoSim freely available to the
general public by turning IcoSim into an
open source project1 whose use will be gov-
erned under a Lesser General Public
License (LGPL) [11]; simulated parts will
be covered individually under a LGPL,
GPL [12], or proprietary license.

Tool Description
Since it is destined to become an open
source project, the descriptive details
provided herein are intended to promote
an understanding of how we accomplish
what we have presented.

Written in C++ and C, IcoSim allows
the use of diverse part types ranging from
low to high abstraction levels. It also sup-
ports using mixed mode parts such as ana-
log, digital, mechanical, hydraulic, magnet-
ic, electromagnetic, et al.

IcoSim is well suited to creating a
VSIL for use in developing embedded

16 CROSSTALK The Journal of Defense Software Engineering December 2005

Economics of Fault Finding
Estimates of the cost to find and correct software faults at each of the principal stages
of a project have been publicized and widely referenced since 1976 when Boehm first
published his study [7] on the subject. Cost numbers vary depending on the type of
application for which the software is being developed, but the common thread they all
exhibit is the substantial increase in project costs caused by carrying problems from
one development stage to the next.

A report released in May 2002 by the National Institute of Standards and Technol-
ogy (NIST) [8] contains a thorough analysis concluding that inadequate software testing
costs the United States an estimated $59.5 billion annually. The 309-page NIST report
is a well-considered treatise on the economic impact of inadequate software testing.

While these numbers are extrapolated from software developed for the financial
services and transportation applications (computer-aided design, computer-aided
manufacturing, etc.) sectors, the message applies even more significantly to industries
engaged in developing software for safety and mission-critical applications such as
aerospace, medical, defense, automotive, etc. Failures of safety/mission-critical soft-
ware may result in harm to, or loss of human life and/or mission objectives such as in
the case of the Therac-25 radiation overdose accidents [2] and the Ariane-5 maiden
launch failure [9]. The Therac-25 software caused severe radiation burns in numerous
cancer patients before it was implicated. The cost of allowing the Ariane-5 software
defect to pass into the operational phase has been estimated to be as high as $5 bil-
lion alone.

NASA recently sponsored a study to evaluate the economic benefit of conducting
independent validation and verification during the development of safety-critical
embedded systems [10]. This study presented cost-to-repair figures focused specifi-
cally on embedded systems projects. Figure 4 shows the relative cost to repair factors
– considered to be conservative estimates for embedded systems – used in this study.

The graph in Figure 4 tells us that an error introduced in the requirements phase
will cost five times more
to correct in the design
phase than in the phase
in which it was intro-
duced. Corresponding-
ly, it will cost 10 times
more to repair in the
code phase, 50 times
more in the test phase,
130 times more in the
integration phase, and
368 times more when
repaired during the
operational phase. The
graph also gives the
cost multipliers for prob-
lems introduced in the
design, code, test, and
integration phases of
the development cycle.

2

Functional

74%

Interface

24%

Internal 2%

37

7

3

130

26

13
3

1

50

10

5
1

10
2

1
5

1
1

0

50

100

150

200

250

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir

e
d

Relative

Cost to

Repair

400
400400

40
400

0
0400

300

250

200

150

100

50

0

368

130

50

64

37

7
3

10

5

1

26
13

3
1

1

15
10

2
1

R
eq

u
ir
em

en
ts

Phase Defect Introduced

P
h
a
s
e

R
e
p
a
ir
e
d

Operational

D
esig

n

Te
st

In
te

g
ra

ti
o
n

Integration

Test

Code

Design

Requirements

Relative

Cost to

Repair
33350350

C
o
d
e

Figure 4: Relative Cost of Software Fault Propagation

December 2005 www.stsc.hill.af.mil 17

Eliminating Embedded Software Defects Prior to Integration Test

systems and software because the simu-
lated parts may be bounded exactly like
their real-world counterparts. In other
words, the inputs and outputs of each
virtual part are readily modeled after the
behavior of their real-world part’s digital,
analog, mechanical, etc. input/output.
Once its behavior is verified, a virtual
part may be identified with the same part
number as its counterpart, and repeated-
ly used wherever system designs specify.

VSIL Parts Libraries
In addition to the NASA research that val-
idated the methodology presented, IcoSim
has been used to create VSILs for soft-
ware verification on more than two dozen
avionics projects over the past decade. It is
scalable to any size system and has been
used for verification of software in single
and dual-redundant avionics systems rang-
ing in criticality from Radio Technical
Commission for Aeronautics, Inc.
(RTCA) Defense Order (DO)-178B2, level
A (safety-critical) to level D (low criticali-
ty). It has also been used for verification
of embedded digital signal processor
(DSP) software implementing Kalman fil-
ter algorithms.

Triakis’ parts library includes instruc-
tion-set-level simulations of many micro-
processors in use today such as the
MPC555, MPC750, RAD6000, MC68000,
MC68332, DSP56005, DSP56302,
DSP56309, I80196, I8051, I8096, I8097,
I8798, et al. Numerous additional periph-
eral and glue parts are in the library as well
as a host of actuators and sensors that
have been created in support of various
VSIL projects. Triakis has also created a
collection of parts that simulate many dif-
ferent data buses and protocols, e.g.,
Aeronautical Radio, Inc. (ARINC) 419;
ARINC 739; Military-Standard-1553;
Time-Triggered Protocol; Avionics Stan-
dard Communication Bus; Commercial
Standard Data Bus; Avionics Full-Duplex
Switched Ethernet; Serial Peripheral
Interface; Peripheral Component Inter-
connect, Controller Area Network, etc.

To support testing with a VSIL, we
have simulated standard laboratory test
equipment such as oscilloscopes, signal
generators, and the functional capability of
microprocessor emulators. The VSIL is an
ideal environment for gathering dynamic
software metrics without instrumenting
either the target operating system or the
software. Code path coverage, Modified
Code Decision Coverage reports, through-
put analysis, timing analysis, and many
other helpful reports are readily produced
in this environment with the addition of
instructions to the test script.

Costs of VSIL Development
A VSIL is made by interconnecting
objects at the lowest level of abstraction
to make successively higher levels of
functional parts until the required envi-
ronment is complete. This hierarchical,
modular approach maximizes the poten-
tial for part reuse on subsequent develop-
ment projects.

To be efficient at making a VSIL, each
part is simulated only to the level of fideli-
ty necessary to achieve one’s goals. For
example, an aircraft rudder is attached to a
sensor that reports its angular position to
avionics subsystems as required. The sen-
sor has a mechanical link to the rudder,
has inertial properties, may have inductive
coils, may have an armature, may be excit-
ed by a 400 Hz reference, etc.

While we could model all of these
characteristics with great precision, it
would be a waste of effort if our system
only required the correct transfer func-
tion of rudder angle to sensor output at a
given update rate. Since part fidelity is
directly proportional to effort, being
selective about where to incorporate
higher fidelity is key to cost-effective
VSIL creation.

It is difficult to quantify the costs of
creating a VSIL for system and software
development because of the large number
of variables involved such as the following:
• System size.
• System complexity.
• Number of parts to be simulated.
• Number of control processing units

to be simulated.
• Experience of simulation engineer(s).

Because of the part-oriented nature
of the VSIL, the cost of creating a simu-
lator for a given project will vary in pro-
portion to the number and complexity of
new parts that must be created. Many

new, embedded designs reuse proven
design elements from prior projects so
the cost of developing simulators dimin-
ishes with successive applications.

Supplemental VSIL Benefits
The benefit of using a VSIL for embed-
ded systems and software development
increases with project size, system com-
plexity, and geographic diversity of organ-
izations and personnel contributing to the
project.

In addition to the cost benefits of early
software fault discovery, a VSIL can support
a project in other important ways. Some of
these benefits are directly measurable, but
others may have less tangible value:
• When contracting out development of

a subsystem, supplying the vendor
with a VSIL and its system test suite
can be a highly effective means of ver-
ifying that the software conforms to
the requirements.

• Development teams in local and
remote locations can quickly re-verify
their software following system revi-
sions that have been implemented and
tested in a VSIL. Using standard con-
figuration control procedures, the lat-
est system revision can be distributed
to all teams as soon as it is available.

• Providing a VSIL to every program-
mer promotes a broader, big-picture
understanding of the system. Every
programmer tests on the whole sys-
tem, every time.

• Testing in a VSIL reduces the depend-
ence on laboratory test stations; con-
sequently, fewer are required.

• Less dependence on laboratory test
equipment reduces resource-con-
tention delays during development.

• A VSIL may be helpful in the opera-
tional phase of a project for the fol-
lowing:
o Software re-verification following

upgrade modifications with full
regression testing.

o Re-verifying software on obsoles-
cent-driven hardware design
changes.

o Verification of system compatibil-
ity with upgrades to peripheral or
subsystem units.

o Eliminating or reducing reliance
on test equipment setups that must
be maintained to support software
changes following entry into serv-
ice.

While not a rigorous analysis, one
avionics company’s post-project review of
having used a VSIL for verification of
their dual-redundant avionics software
revealed some attractive cost-benefits.

“There are many factors
that influence the cost,

but a typical VSIL
[virtual system

integration laboratory]
can be developed

for about 5 percent
to 10 percent of the
overall project cost.”

Total Creation of a Software Project

18 CROSSTALK The Journal of Defense Software Engineering December 2005

Based on their findings they concluded
that future projects could expect a 24 per-
cent schedule savings, a $130,000 direct
savings on laboratory equipment, and real-
ize an overall cost savings of 14 percent
on an average $4.5-million project. These
estimates do not take into account the
benefits afforded by a VSIL throughout
the operational life of a product. There
are many factors that influence the cost,
but a typical VSIL can be developed for
about 5 percent to 10 percent of the over-
all project cost. This places the return on
investment in the range of 40 percent to
180 percent for the above project.

Experiences will no doubt vary from
project to project; however, these esti-
mates can provide useful guidance when
assessing the life-cycle cost/benefit of
using a VSIL for development.

Summary
The new method of embedded systems
and software V&V presented here goes
far beyond an incremental improvement
to the status quo. While not a panacea, it
does provide a cost-effective, proven
means of the following:
• Ensuring that the target software has

implemented all known and tested sys-
tem requirements – prior to hardware
integration.

• Verifying automatically generated
code, reused software, and the RTOS.

• Verifying response of systems and
software to a wide range of realistic,
dynamic failures and off-nominal sce-
narios.

• Re-verifying software following system
revisions and updates.

• Ensuring that hardware redesigned for
obsolescence is compatible with the
software.

• Verifying that new and upgraded
peripherals and subsystems function
correctly with the target system.
The approach described provides a

bridge between algorithm and model
development tools, and the real-world sys-
tem environment in which embedded
algorithms must function. This method is
a highly viable way to address a number of
problems that hamper efficient embedded
systems and software development.u

References
1. Bennett, T.L., P.W. Wennberg. “The

Use of a Virtual System Simulator and
Executable Specifications to Enhance
Software Validation, Verification, and
Safety Assurance – Final Report.”
Software Assurance Research Program
Results Web Site. Fairmont, West
Virginia : NASA IV&V Facility, June

2004. <http://sarpresults.ivv.nasa.
gov/ViewResearch/285/32.jsp>.

2. Lutz, R.R. “Analyzing Software Errors
in Safety-Critical, Embedded Sys-
tems.” Pasadena, CA: Jet Propulsion
Laboratory, California Institute of
Technology, 1994.

3. Leveson, N.G. Safeware – System,
Safety, and Computers. Addison-
Wesley, 1995.

4. Leveson, N.G. “Software Safety: What,
Why, and How.” ACM Computing
Surveys 18.2 (1986).

5. Ellis, A. Achieving Safety in Complex
Control Systems. Proc. of the Safety-
Critical Systems Symposium. Brighton,
England: Springer-Verlag, 1995: 2-14.

6. Thompson, J.M. “A Framework for
Static Analysis and Simulation of
System-Level Inter-Component Com-
munication.” Masters Thesis. Univer-
sity of Minnesota, 1999.

7. Boehm, B.W. “Software Engineering.”
IEEE Transactions on Computer 1.4
(1976): 1226-1241.

8. Tassey, G. “The Economic Impacts of
Inadequate Infrastructure for Software
Testing.” National Institute of Stan-
dards and Technology, 2002 <www.
nist.gov/director/progofc/report

02-3.pdf>.
9. Leveson, N.G. “The Role of Software

in Spacecraft Accidents.” AIAA
Journal of Spacecraft and Rockets 41.4
(July 2004).

10. Dabney, J.B. “Return on Investment of
Independent Verification and Vali-
dation Study Preliminary Phase 2B
Report.” Fairmont, W.V.: NASA
IV&V Facility, 2003. <http://sarp
results.ivv.nasa.gov/ViewResearch/28
9/24.jsp>.

11. GNU Lesser General Public License.
Vers. 2.1. Boston, MA: Free Software
Foundation, Inc., 1999 <www.open
source.org/licenses/lgpl-license.
php>.

12. Open Source. The General Public
License (GPL). Vers. 2. Boston, MA:
Free Software Foundation, Inc., 1991
<www.opensource.org/licenses/
lgpl-license.php>.

Notes
1. Details about open-source projects

can be found at <http://sourceforge.
net/>.

2. Information about DO-178B can be
found at <www.software.org/quagmire/
descriptions/-178b.asp>.

About the Authors

Ted L. Bennett is di-
rector of Systems En-
gineering and Business
Development at Triakis
Corporation. He has
more than 25 years

experience in embedded hardware and
software design, systems engineering,
project management, and business
development in the aerospace industry.
Bennett was principal investigator for
the NASA-sponsored research project
that validated the breakthrough
methodology presented in this article.
He is also principal investigator on two
additional NASA research grants cur-
rently being conducted by Triakis. He
has a Bachelor of Science in electrical
engineering from the University of
Wisconsin at Madison.

Triakis Corporation
16149 Redmond WY STE 177
Redmond,WA 98052
Phone: (425) 558-4241
Fax: (425) 558-7650
E-mail: ted.bennett@triakis.com

Paul W. Wennberg is
president and founder
of Triakis Corporation
and conceived and cre-
ated IcoSim, the pure
virtual environment sim-

ulator tool discussed in this article. He
has over 20 years experience in the
design and test of embedded systems
hardware and software, and pioneered
this new methodology. A U.S. Air
Force veteran, Wennberg logged over
1,400 hours piloting T38 and KC135
aircraft prior to completing his service
with the rank of captain. He has a
Bachelor of Science in electrical engi-
neering from the University of
Washington at Seattle.

Triakis Corporation
16149 Redmond WY STE 177
Redmond, WA 98052
Phone: (425) 861-3860
Fax: (425) 558-7650
E-mail: paul.wennberg@

triakis.com

